Search results for "Hybrid steel-trussed concrete beam"
showing 6 items of 6 documents
Experimental characterization of friction properties of materials for innovative beam-to-column dissipative connection for low-damage RC structures
2023
Low-damage design of structures in seismic-prone areas is becoming an efficient strategy to obtain "earthquake-proof" buildings, i.e. buildings that, even in the case of severe seismic actions, experience a low or negligible amount of damage. Besides the safeguard of human lives, this design strategy aims also to limit the downtime of buildings, which represents a significant source of economic loss, and to ensure an immediate occupancy in the aftermath of an earthquake. In this context, focusing on moment-resisting frames (MRFs), several solutions have been developed for the beam-to-column connections (BCCs) of steel and precast/prestressed concrete structures, but very few for cast-in-sit…
Friction-based beam-to-column connection for low-damage RC frames with hybrid trussed beams
2022
Hybrid Steel-Trussed Concrete Beam (HSTCB) is structural typology suitable for light industrialization. HSTCBs usually cover long span with small depths, which lead to significant amount of longitudinal rebars. The latter make beam-column joints more prone to damage due to earthquake-induced cyclic actions. This phenomenon can be avoided using friction-based BCCs. Friction devices at Beam-to-Column Connections (BCCs) have become promising solutions to reduce the damage experienced by structural members during severe earthquakes. Few solutions have been developed for cast-in-place Reinforced Concrete (RC) and steel-concrete composite Moment Resisting Frames (MRFs), because of the difficulty …
Experimental analysis, numerical and analytical modeling of shear strength mechanisms in Hybrid Steel Trussed Concrete Beams
2014
Experimental Investigation of the Shear Response of Precast Steel-Concrete Trussed Beams
2017
The results of an experimental campaign of three-point bending tests on precast composite beams, named hybrid steel-trussed concrete beams (HSTCBs), are provided. HSTCBs are typically constituted by a precast steel truss embedded in a block of concrete cast in place. Two series of specimens were manufactured, designed such that shear failure would occur, and tested under positive and negative bending moment. The experimental results obtained showed that fragile shear failure occurred in almost all cases, evidencing the crisis of the compressed concrete strut involved in the collapse mechanism. Yielding of the steel members provided ductility to the system, especially in those cases in which…
Design of innovative friction damper devices for earthquake-resilient RC frames with Hybrid Steel-Trussed Concrete Beams
2021
This thesis focuses on the design of innovative friction damper devices for earthquake-resilient Reinforced Concrete (RC) frames realized with Hybrid Steel-Trussed Concrete Beams (HSTCBs). These devices fall within the framework of the recently-proposed low-damage design strategy for structures built in earthquake-prone areas, on the basis of which the structures are designed to experience negligible damage when subjected to seismic events. The comprehensive solution proposed aims at introducing a feasible option for building earthquake-resilient RC Moment Resisting Frames (MRFs), having been proposed very few solutions for this structural scheme so far. Innovative solutions are proposed fo…
Seismic Performance of Earthquake-Resilient RC Frames Made with HSTC Beams and Friction Damper Devices
2021
Seismic behavior of RC frames with hybrid steel-trussed concrete beams is affected by panel zone damage due to a large amount of longitudinal reinforcement. Here the seismic efficiency of innovative frames characterized by friction damper devices (FDDs) at beam-to-column connections is compared against traditional frame. Three configurations are investigated: FDDs alone; FDDs with column-to-foundation connections having preloaded threaded bars and disk springs; FDDs with self-centering friction devices. Non-linear analyses show that FDDs alone prevent plastic hinge formation at beam ends and beam–column joint damage. FDDs with self-centering friction devices effectively limit both peak and …